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SOME COMMENTS ON MULTIVARIATE TECHNIQUES 

 

 

Path Analysis 

 

Path analysis is an extension of multiple regression analysis.  A typical use of regression is to 

assess the relationship between one variable and a set of other variables – or to predict a single 

variable from one or more other variables.  In the typical path analysis, more than one variable is 

considered dependent.  In these models, the predictive ordering is of interest.  In regression, we 

say: X explains variation in Y.  In path models, a causal model is being explained where we hope 

to say:  X causes Y, which causes Z.  

 

Because of the demands of the multivariate estimation and simultaneous parameter estimation 

(there are many parameters being estimated in a typical path analysis) the data information 

demands are greater, requiring 300 cases or more for most models. 

 

Recall that one structural assumption of regression is that “the right variables are in the model.”  

This requirement is even greater in path analysis, because the results of a path analysis are highly 

sensitive to the presence or absence of important variables.  The estimates of parameters are 

conditional on the correct specification of the model.  One additional benefit with path analysis 

models is the availability of tests of model-data fit.  Fit statistics are readily available based on 

any number of assumptions or data conditions the researcher is able to make.   

 

The labels “dependent” and “independent” are replaced by “endogenous” and “exogenous.”  In 

path analysis, a variable can be both dependent and independent – there are multiple equations 

being estimated simultaneously.  The values of exogenous variables are considered known – 

there is no need for estimation here.  The endogenous variables are considered to be caused by 

one or more of the other variables.  If a variable is being explained by another variable at any 

point in the model, it is considered endogenous. 

 

Path coefficients are estimated in a method similar to multiple regression for each endogenous 

variable.  The model is expected to explain variation in these variables.  Consider the model: 

 

 

 

 

 

 

 

 

 

 

 

There are three regressions required here because there are three endogenous variables (self-

esteem, effort, and job performance), which are the dependent variables of the three equations.  

There are also two exogenous variables.   
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There is a unique distinction among path models based on the recursive nature of the model.  

Fully recursive models contain direct effects on all variables farther down the causal chain.  The 

model above is not fully recursive because level of education and mental health do not have 

direct effects on job performance, only indirect through self-esteem and effort.  In addition, 

mental health does not have an effect on self-esteem.   

 

Fully recursive models always fit the observed data perfectly.  In addition, recursive models 

contain paths (effects) that all go in one direction.  Nonrecursive models contain paths that go 

both ways – the causation occurs in both directions.   

 

Another important consideration is model identification, which is a prerequisite to estimation.  

Recall that for an equation such as 

 

 x + y = 10 

 

there are an infinite number of solutions.  We have two unknowns and one equation.  We need 

another equation with one or both of these unknowns to complete estimation or obtain a single 

solution.  When the parameters of a model can be uniquely determined, the model is identified. 

 

Models with more unknowns than pieces of information are called under-identified and cannot 

be solved uniquely.  Models with the same number of unknowns as pieces of information are 

called just identified models, can be solved, but cannot be tested statistically.  Models with more 

information than unknowns are called over-identified models – these are typically called 

identified and can be uniquely solved and tested statistically.   

 

A common structural equation model is confirmatory factor analysis where items are a prior 

hypothesized to be resulting from one or more underlying factors (latent traits).  The observed 

variables (X) result from factors ().  The paths from factors to the observed variables are factor 

loadings ().  Correlations and covariances () among the factors are also estimated.  

Covariances among the measurement errors () are contained in the matrix .  There exists, 

then, one equation for the relationship between each observed variable and its factor: 

 

X1 = 111 + 1  which is analogous to the regression equation Y = 1X1 + e 

 

Since in the structural equation model, the s are latent variables (not directly observed), we 

cannot use regular regression methods to estimate the parameters of the model.  Instead, a 

correlation or covariance matrix is used ().  This matrix is typically found as: 

 

 =  +  

 

In confirmatory factor analysis, the unknowns are found in , , and .  The information 

available to obtain the solution includes the elements in .  The number of unique elements in  

is p(p+1)/2, where p is the number of observed variables.  The task is then to find estimates of 

the unknown matrices that will best reproduce .  In regression we find s to reproduce the Ys.
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Principal Components 

 

The goal of principal component analysis (PCA) is to reduce the number of variables in a data 

set to an essential core set of variables (typically orthogonal) that contains or explains nearly all 

of the variance in the original set of variables.  Is there a smaller subset of variables? 

 

y ~ N (, )  

 

A principal component closely resembles a regression equation on standardized variables – there 

is no constant term (intercept). 

 

Y = 0.2(X1) + 0.1(X2) + .5(X3) 

 

This is a linear combination of the variables that maximizes the amount of total variance 

explained.   

 

z1 = a11y1 + … + ap1yp = ay 
 

2

1zs  = a V(y) a = a  a     (1p)(pp)(p1) 

 

Consider the geometry involved here. 

 

The principal component is a vector that passes through the observed data points in a 

multidimensional space of p dimensions (number of variables).  Each observation lies at a given 

distance perpendicularly from the vector (1
st
 principal component).  This distance is the error 

score for each observation.  The 1
st
 principal component minimizes the sum of squared errors. 

 

This vector, the 1
st
 principal component, is also an eigenvector – the amount of variance 

explained by each eigenvector is the eigenvalue.   

 

If there were 10 variables, the total variance would be equal to 10, since the variables would be 

normalized with variance equal to one.  If the variance explained by the 1
st
 principal component 

is 5, this would indicate that the eigenvector accounts for the same amount of variance as five of 

the original variables.  This is 50% of the variance. 

 

A second principal component could be found that again maximizes the amount of remaining 

variance.  This principal component would be perpendicular, orthogonal, to the first component.  

So the proportion of variance explained is additive. 

 

The number of components required to explain 100% of the variance is the rank (true 

dimensionality) of the correlation matrix used to summarize the interrelationships of the 
variables.  Usually, the number of components extracted includes all of those with eigenvalues 

equal to one or more – one is the minimum because it explains as much variance as a single 

variable so no gain is obtained by employing components with less variance than a single 

variable– the point is to reduce the number of variables.  This is typically done until 75% or 

more of the variance has been explained.   
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It is typical to use the correlation matrix to extract components – particularly when the variables 

employed vary greatly in terms of their scale – where the correlation matrix standardizes 

variables in terms of scale.  Statistically, it is preferred to use the covariance matrix, but only 

when the scales are similar.  The results are not the same.   

 

Typically, a sample size of 100 is a good basic minimum.  However, beyond this, the total 

sample size should be 10 times the number of variables.  So if you have 20 variables, a sample 

size of 200 should secure stable estimates.  This is qualified by the degree of variability in the 

sample as a whole.  As in all other linear models, the value of the information from the sample is 

directly related to the variability in the sample.  With greater variability, fewer observations will 

still yield stable estimates.   

 

Often, PCA is confused with factor analysis.  Principal components analysis is typically 

conducted with a correlation matrix where ones are on the main diagonal or the diagonal 

contains variances when a variance-covariance matrix is employed.  In factor analysis, values 

that are less than one are placed on the diagonal – these are communalities, the squared multiple 

correlation of each variable with all others is one form of a communality.   

 

In practice, with enough subjects and variables (20 or more), there is little difference in the 

results of any method of extraction or what is placed in the diagonal of the matrix for extraction. 

 

General Results 

 

Trace (S) = 1 + 2 + …+ p    the sum of variances 
 

Where A is nonsingular, square and full-rank, Rank(A) = p such that |A|  0. 

 

 Det(A) = 



P

1i

i  Trace(A) = 



P

1i

i  

 

Thinking about the Determinant as the product of the eigenvalues highlights the idea that the 

determinant informs us about the degree to which a set of variables provides relatively unique 

nonredundant information (a large determinant, indicating relative orthogonality) or a set of 

variables that are largely redundant (small determinant near zero, indicating multicolinearity).  

Thinking about the Trace as the sum of the eigenvalues highlights the idea that the trace informs 

us regarding the total amount of variance available to be analyzed in a set of variables – 

particularly useful when the variables are largely orthogonal. 

 

These considerations work because an eigenvalue can be thought of as the variance of a linear 

combination of variables.  The specific amount of variance taken from each variable is 

represented by the eigenvector weight.  Since the Eigen values sum to the total variance, 

eigenvalues can also be thought of as redistributions of the variances of the set of variables.  
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Multivariate Hypothesis Tests 
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Multivariate Effect Sizes 

 

 

MANOVA:, the multivariate analysis of variance (multiple dependent variables) 

 

One effect size for MANOVA is eta squared: η
2
, which represents the proportion of variance in 

the resulting linear combination of the dependent variables that is explained by the groups 

represented in the independent variables. 

 

This can be computed from Wilks Lambda: (1 – λ)  

 

Cohen provided guidelines for multivariate effect sizes, such that .02 is a small effect, .13 is a 

medium effect, and .26 is a large effect. 

 

*Discriminant function analysis is appropriate as a follow-up to MANOVA.  This would identify 

the continuous variables that were discriminating among the groups most strongly. 

 

 

Discriminant Function Analysis 

 

An index of effect size that would be appropriate for Discrimination Functions would be the 
squared discriminant loadings as the proportion of shared variance between a variable and the 

underlying latent variable or discriminant function. 

 

 

For more information on effect sizes and power related issues, see; Cohen, J. (1992). A power 

primer. Psychological Bulletin, 112, 155-159. 
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ANOTHER LOOK AT… PRINCIPAL COMPONENTS 

 

 

Explaining the variance-covariance structure of a set of variables through linear combinations of 

the variables is the goal of principal components analysis.  The two primary purposes of this 

technique are (a) data reduction and (b) interpretation.  This procedure is frequently used because 

there are (a) too many independent variables relative to the number of observations and (b) some 

variables are highly correlated, producing unstable estimates. 

 

P components are required to reproduce all of the variability in the system; however, most of the 

variability can usually be accounted for by fewer than p components.  If there are k components 

that account for most of the variability of the p variables, then we say that the data set has been 

reduced to k principal components. 

 

Principal components consist of linear combinations of the p variables in the data set.  

Geometrically, the linear combinations represent a new coordinate system that was obtained by 

rotating the original system to maximize the variability of a simpler representation of the p 

coordinate axes (from the original p variables in the system).   

 

Let x = (x1, x2, …, x3) with the variance-covariance matrix  (sigma) and eigenvalues 1  2 

… p  0.  
 

Consider linear combinations of the xs: 

 

 Y1 = a1 X = a11X1 + a12X2 + … + a1pXp 

 Y2 = a2 X = a21X1 + a22X2 + … + a2pXp 

  
 Yp = ap X = ap1X1 + ap2X2 + … + appXp 
 

Then we can obtain  

 

 Var(Yi) = ai  ai and Cov(Yi, Yk) = ai  ak 

 

The principal components are the uncorrelated linear combinations Y1, Y2, …, Yp with variances 

as large as possible. 

 

The first principal component is the linear combination with the maximum variance; it 

maximizes Var(Y1) = a1  a1.  Of course, the variance can be increased by multiplying any a by 
a constant.  To avoid this indeterminacy, coefficient vectors are constrained to be unit length. 

 

First principal component = linear combination a1 X that maximizes Var(a1X) so that a1a1 = 1. 

Second principal component = linear comb. a2 X that maximizes Var(a2X) so that a2a2 = 1 and 

Cov (a1 X, a2 X) = 0. 
 

Etc… 
 


